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Abstract

Pressure drop is significantly affected by heat transfer in mixed convection situations. A semi-empirical correlation for pressure

drop is developed from a theoretical base by first making use of the momentum integral solution to the heat and momentum

equations for natural convection on a vertical surface. The boundary condition on the free-stream side of the boundary layer is

changed to reflect the shear on that surface due to the forced convection, and empirical data are used to develop a formula useful in

design and applications. The equation may be used with bulk fluid properties or film properties. The equation is valid for laminar,

mixed convection conditions in vertical, internal, aiding flows with constant wall temperature boundary condition.

� 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Mixed convection heat transfer exists when natural

convection currents are the same order of magnitude as

forced flow velocities. The term ‘‘combined convection’’

is also used, and the flows may be internal or external to

a bounding surface. Forced flows may be horizontal,

vertical or some angle in between. In vertical, internal

flows the buoyancy forces may be directed opposite to
the forced flow (hence ‘‘opposing flow’’ terminology), or

in the same direction as the forced flow (hence the

‘‘aiding flow’’ terminology). In opposing flow situations

(heating in downflow or cooling in upflow) the velocities

in opposite directions create shear instability and tur-

bulence. This can happen even when the Reynolds

number based on forced flow average velocity is in the

laminar region. In aiding flows (heating in upflow or
cooling in downflow), by contrast, the velocities of

forced flow and buoyancy forces are in the same direc-

tion, and laminar-like flow is preserved even if the

Reynolds number based on forced flow average velocity

is nominally in the turbulent region. Hence aiding flow

situations are amenable to laminar flow analysis, and
that is the subject of the present work.

The interactions of buoyancy-driven components of

velocity and forced flow velocities can have a profound

effect on the velocity profile, heat transfer coefficient and

pressure drop. The literature is wide and varied. A re-

view by Jackson et al. (1989) is particularly helpful.

Early work of Scheele and Hanratty (1963) and Zeldin

and Schmidt (1972) further elucidate aspects of aiding
flow, in particular.

The measurement of pressure drop in vertical, mixed

convection flow is a very difficult problem, particularly

for liquids, because the actual pressure differences are

quite small. Measurement of liquid pressure drop is al-

most impossible to achieve with anything but a ma-

nometer. Manometer readings need to be corrected

because the fluid inside the conduit is at a different
temperature than that outside the conduit, and a cor-

rection factor due to the difference in density must be

applied. This correction factor depends on flow rate and

must be arrived at by numerical integration of radial

and axial velocity profiles, which must also be obtained.

This creates a lot of difficulty for experimental investi-

gations with liquids, in particular. The work of Marti-

nelli et al. (1942) was used by Saylor and Joye (1991) to
arrive at a correction procedure. We further extend that
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work here to develop a predictive equation for pressure

drop in vertical, internal, aiding flow situations with

constant wall temperature.

2. Momentum integral approach

The expected increase in pressure drop (or friction
factor) in aiding flow may be calculated for situations

where the velocity profile is known. For mixed convec-

tion with constant wall temperature situations, the the-

ory is not well developed, and an alternative approach

may be used. The momentum integral analysis for ve-

locity profile in a purely natural convection boundary

layer in vertical flow can provide a useful starting point

for development. For convenience, a mixed convection
flow may be divided into a ‘‘core’’ region in the center of

the conduit––a tube, for example––and a ‘‘shell’’ region

near the wall. The core region is where forced flow

dominates. The shell region is assumed to be where

natural convection dominates; it is essentially the natu-

ral convection boundary layer. The velocity in this

boundary layer is a function of radial and vertical dis-

tance coordinates. Holman (1997) illustrates the mo-
mentum integral approach and gives,

u=uz ¼ ðy=dÞð1� y=dÞ2 ð1Þ

where y is taken as the radial coordinate for the present

situation of flow in a tube, d is the boundary layer

thickness, u is the velocity and uz is a velocity function

given by

uz ¼ C1z1=2 ð2Þ

where z is the vertical distance coordinate and C1 is a

constant given by

C1 ¼ 5:17mð0:952þ PrÞ�1=2ðgbðTw � TbÞ=m2Þ1=2 ð3Þ

where Pr is the Prandtl number, b is the volume ex-
pansivity, Tw is the average wall temperature and Tb is

the average bulk temperature of the fluid, m is the ki-

nematic viscosity (l=q), and g is the acceleration of

gravity.

The boundary layer thickness, d, is also a function of

z. Thus,

d ¼ C2z1=4 ð4Þ

where C2 is another constant given by

C2 ¼ 3:93ð0:952þ PrÞ1=4ðgbðTw � TbÞ=m2Þ�1=4Pr�1=2 ð5Þ

Nomenclature

Cp fluid heat capacity (kJ/kgK)

C1, C2, C3 constants defined in the text

D tube diameter (m)

f Fanning friction factor (dimensionless)

g gravitational acceleration (m/s2)

GrL Grashof number based on tube length,

q2L3gbDT=l2

h film heat transfer coefficient (W/m2 K)
k fluid thermal conductivity (W/mK)

L heated length of tube (m)

P pressure (Pa or mm water)

DP pressure drop (Pa or mm water at max den-

sity)

Pr Prandtl number, lCp/k

Q volumetric flow rate (m3/s)

r radial coordinate (m)
R tube radius (m)

Re Reynolds number, Dvq=l
Sp.Gr. specific gravity––density relative to that of

water at 4 �C
T temperature (K)

DT temperature difference (K)

u, v fluid velocity (m/s)

y distance coordinate perpendicular to the wall
(radial direction) (m)

z tube axial distance coordinate (m)

Greeks

b volume expansion coefficient of the fluid (1/

K)
_cc shear rate, �dv=dr (s�1)

d boundary layer thickness (m)
uv viscosity ratio, l=lw (dimensionless)

l fluid viscosity (mPa s)

m kinematic viscosity, l=q (m2/s)

q fluid density (kg/m3)

s shear stress (Pa)

Subscripts

Av average value

b properties of fluid at average bulk tempera-

ture

D based on diameter

expt experimental values

f properties of fluid based on average film

temperature, ðTw þ TbÞ=2
L based on length

lam laminar flow

nc natural convection

w evaluated at the wall conditions

1 relative to free stream conditions
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This development, attributed to an unpublished work of

Squire, first appeared in Modern Developments in Fluid

Dynamics (Goldstein, 1938), and was modified by

Eckert and Drake (1950) before appearing in its most
recent form (Holman, 1997).

The solution depends on four boundary conditions:

(1) u ¼ 0 at y ¼ 0 (the wall),

(2) u ¼ 0 at y ¼ d (the boundary layer thickness),

(3) ou=oy ¼ 0 at y ¼ d, and
(4) o2u=oy2 ¼ �gbðTw � TbÞ=m2 at y ¼ 0,

where Tb has been substituted for T1. In the mixed

convection case, the second boundary condition would

not hold; the velocity at y ¼ d is non-zero due to the

forced flow. This will be addressed later.

The average boundary layer thickness, dav, and the

average velocity, uav, can be obtained by integrating

Eqs. (2) and (4), respectively. This yields,

dav ¼ 0:8djz¼L ð6Þ

and

uz;av ¼ 0:667uzjz¼L ð7Þ

Values for uz and d at the top of the tube can be ob-

tained by setting z ¼ L in Eqs. (2) and (4). The average

velocity must be calculated from a double average––with

respect to both radial and axial coordinates. The radial

coordinate does not depend on the thermal properties or

experimental conditions, and so integrating Eq. (1) from

y=d ¼ 0 to y=d ¼ 1 gives,

uav ¼ 0:0833uz;av ð8Þ
Using the tube dimensions and conditions of the data

of Saylor and Joye (1991), L ¼ 1:57 m, L=D ¼ 49:6,
Pr ¼ 4:53, GrL ¼ 1:22� 1013 (this is the Grashof num-

ber based on length). Thus,

C1 ¼ 2:69 ð9Þ

uz;av ¼ 2:25 m=s ð10Þ
and

uav ¼ 18:7 cm=s ð11Þ

C2 ¼ 0:00212 ð12Þ

Thus,

dav ¼ 1:9 mm ð13Þ

By contrast the tube ID is 32 mm. This gives a ratio of 1/

20 for the boundary layer thickness to diameter. This is

a large enough ratio to ignore the effects of curvature on

the boundary layer and to permit the analysis of external

flow to fit an internal flow situation. If d were the same

order of magnitude as D, the tube diameter, this could

not be said.

An estimate of the friction factor can be made for

upflow heating or downflow cooling cases, because

aiding flow situations stabilize laminar flow, and the

equations developed from the momentum integral ap-
proach will approximate these conditions reasonably

well. However, in opposing flow situations, instability is

inherent. Turbulence will always be present, and the

momentum integral analysis using laminar relations will

not apply.

In upflow heating or downflow cooling, these equa-

tions can be used along with the defining equations for

Fanning friction factor, f , defined below,

f ¼ 2sw=qv2av ð14Þ
and Newton�s Law for viscosity,

sw ¼ �lðdv=drÞw ð15Þ
where q is the fluid density, l is the viscosity, v is the

fluid velocity, and sw is the shear stress at the wall. At a

fixed flow rate, the friction factor for purely forced

convection in laminar flow would be 16=Re, where Re is
the Reynolds number. The shear stress at the wall can be

estimated if the velocity profile is known, and a com-

parison to the purely forced flow case can be made. The

film temperature is different than the bulk average

temperature, so viscosity in the boundary layer ‘‘shell’’

region is different than that in the ‘‘core’’ region filling

the rest of the tube space. The shear rate at the wall can

be estimated by taking the derivative of Eq. (1) using the
average thickness for d and letting y ¼ R� r.

�dv=drjw ¼ uz;av dððy=dÞð1� y=dÞ2Þy¼0=dy ð16Þ

which yields uz;av=d. Thus, the shear rate at the wall

based on the velocity profile approximation is about

1000 s�1 for the data of Saylor and Joye (1991) quoted

above.

The shear rate expected for laminar forced flow alone

at the same conditions depends only on Reynolds

number. At Re ¼ 360, the flow rate is 3.8 cm3/s, and the
shear rate can be calculated from a standard tube-flow

equation, given for example by Rosen (1982) as

�dv=drjw ¼ 4Q=pR3 ¼ ð4Þð3:8Þ=pð1:6Þ3 ¼ 1:0 s�1 ð17Þ

where Q is volumetric flow rate, and R is tube radius.

The shear rate and shear stress are directly proportional

to Q in laminar flow. At Re ¼ 2820 (one of the data

points taken from Fig. 3 of Saylor and Joye (1991)), the
shear rate would be

�dv=drjw ¼ 7:8 s�1 ð18Þ
The shear stress, friction factor and pressure drop are all

proportional to the shear rate. Therefore, in upflow

heating and other aiding flow situations in the low
Reynolds number, laminar region, the friction factor

can be two-to-three orders of magnitude higher than that

based on forced flow considerations alone. This is quite
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surprising and is shown by the data of Saylor and Joye

(1991), for example, Fig. 3 in that reference, and this

substantially explains the increased pressure drops re-

ported there for aiding flow. The corresponding heat
transfer coefficients are reported in Joye et al. (1990).

3. Development of predictive theory

A more quantitative relationship that could be used

to predict the pressure drop in this kind of flow with

heat transfer would be desirable. Since the foregoing

laminar analysis would seem to be valid, the pressure

drop increase due to aiding flow heat transfer could be
calculated on the basis of shear rates, as indicated

above. The predictive equation would then take the

general form,

DP=DPlam ¼ 1þ _ccnc= _cclam ð19Þ
where subscript ‘‘lam’’ refers to the laminar forced flow

in the absence of natural convection effects, and the

subscript ‘‘nc’’ refers to the shear rate including the ef-

fect of the natural convection forces, and _cc is the shear

rate. The shear rates can be computed by

_ccnc ¼ uz;av=dav ¼ 0:834L1=4C1=C2 ð20Þ

_cclam ¼ 4Q=pR3 ¼ 8lRe=qD2 ð21Þ

and

_ccnc= _cclam ¼ 0:137mfGr
3=4
L Pr1=2=mbReðL=DÞ2ð0:952þ PrÞ3=4

ð22Þ

The quantity DPlam can be computed by

DPlam ¼ ð128lLQ=pD4ÞðqgÞðSp:Gr:=/0:38
v Þ ð23Þ

which is the well known Hagen–Poiseuille equation for

laminar flow in a tube, modified for units of pressure in

mm water at maximum density and corrected for heat

transfer (Holman, 1997).

Eq. (22) needs correction for mixed convection con-

ditions. The second boundary condition for the mo-

mentum integral equations must be changed. The
velocity is finite and unknown at the boundary layer

edge. Using this boundary condition in this form results

in an analytically unsolvable set of equations. In

searching for another route to a solution of this prob-

lem, one can see that this boundary condition clearly

introduces an additional Reynolds number dependence,

because the velocity at the boundary will depend on the

forced flow. It is possible that an additional Grashof and
Prandtl number dependence could also be introduced.

The Reynolds number dependence can be recovered

from the pressure drop data of Saylor and Joye (1991)

since the Grashof number was essentially constant and

Prandtl number variation was small.

Therefore, an equation of the form below can be

postulated, rearranged, and plotted against Reynolds

number to evaluate the power ‘‘n’’ and the constant

‘‘C3’’. In this way all dependencies can be recovered so
long as Gr and Pr do not depart too significantly from

those of the data. The actual measured pressure drop is

used for DP , and DPlam is calculated by Eq. (23),

DP=DPlam ¼ 1þ C3ðmf=mbÞGr3=4L Pr1=2=ð0:952þ PrÞ3=4

� ðL=DÞ2Ren ð24Þ
Fig. 1 shows the pressure drop data from Saylor and

Joye (1991) rearranged in a format suitable to determine
the slope and the constant C3. This requires moving the

‘‘1’’ to the left-hand side of the equation. From Fig. 1

the slope is evaluated as )2 and the constant C3 ¼ 76:3.
In Eq. (24) the film properties were used to evaluate

both the Grashof and Prandtl numbers as would be

logical from considerations of the boundary layer. The

bulk properties were used for Reynolds number, because

it governs the forced flow in the ‘‘core’’ more than the
boundary layer in the ‘‘shell’’. In many instances it may

be preferred to use the bulk properties for all dimen-

sionless groups to put them on the same basis. Thus Eq.

(24) can be re-evaluated using the bulk properties. The

data need to be re-plotted, and the corresponding line is

also shown in Fig. 1. The corresponding equation is

given below,

DP=DPlam ¼ 1þ 1565Gr3=4L Pr1=2=ð0:952þ PrÞ3=4Re2

� ðL=DÞ2jb ð25Þ
where all fluid properties are evaluated at the bulk av-

erage temperature. This equation is much simpler than

the complex Bessel function relationships developed

originally by Hallman (1956) which lack a clear Rey-

nolds number dependence. The pressure drop ratio

Fig. 1. Slope and intercept determination for Reynolds number de-

pendence.
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term, DP=DPlam is identical to fRe=ðfReÞ0, used by others

in this field to characterize pressure drop functionality.

In using this equation one must know something

about the temperatures of the fluid. In general this is not
possible a priori. However, the bulk average tempera-

ture of the fluid could be reasonably estimated by taking

an average of the wall temperature and the entrance

temperature, both of which should be known or, in the

case of the wall temperature, reasonably estimated. This

should be a very close estimate for property determi-

nation and Grashof number calculation. A second iter-

ation may be required after the system temperatures are
better defined. In many cases the diameter-based Gras-

hof number may be preferred. This is easily found by

substituting ‘‘D’’ for ‘‘L’’ in the definition and calculat-

ing the conversion factor to use in Eq. (25), i.e.

GrL ¼ ðL=DÞ3GrD

4. Comparison with data

Fig. 2 shows how well this equation fits actual pres-

sure drop data from Saylor and Joye (1991) at

GrL ¼ 4� 1012 and Pr ¼ 4. The fit is quite good despite

the fact that Grashof number based on bulk average

temperature instead of film temperature is not quite so

constant (it varies almost an order of magnitude from

highest at the low flow rates to lowest at the high flow
rate). The corresponding forced flow Reynolds numbers

are indicated for each data point. The theoretical pres-

sure drop calculated by the Hagen–Poiseuille equation

for laminar flow and the pressure drop calculated using

the friction factor equation for turbulent flow are also

given to show the relative order of magnitudes between

the two. Fig. 2 also shows the difference between the

pressure drop calculated purely on the basis of forced
flow considerations without the influence of buoyancy

forces and the pressure drop calculated with significant

buoyancy forces acting. From the graph, one can see the

differences between these pressure drops are quite sub-

stantial, yet the fit to the actual data provided by Eq.
(25) is quite good. The plot is pressure drop vs. flow rate,

as normally would be used. One can see clearly that

without a heat transfer correction, the pressure drops

calculated on the basis of forced flow alone, laminar or

turbulent, will be in significant error.

The range of applicability of Eq. (25) is in the lami-

nar, mixed convection zone, which is defined by the heat

transfer and not the usual Reynolds number of 2100 as
in forced flow alone. One can see from Fig. 2 that

laminar-like flow extends into the turbulent forced flow

region up to Reynolds numbers of about 7000 at this

Grashof number. At Reynolds number of 11,000 the

pressure drop measured is almost equal to that calcu-

lated by turbulent forced flow, and hence the significant

effect of buoyancy disappears around this value. Up

unto this value the flow characteristic is predominantly
laminar. Similar things happen to the heat transfer co-

efficient, viz. the Nusselt values approach those for

purely forced convection at around the same Reynolds

number for this Grashof number (Joye et al., 1990). The

transition is dependent on Grashof number as illustrated

by Joye (1996) and Joye and Wojnovich (1996). The

equation is expected to be valid for Grashof numbers in

the range up to about 108 based on diameter. This
corresponds roughly to a temperature difference be-

tween wall and bulk fluid of up to about 60 �C for

aqueous liquids. This range is typical for heat transfer

practice in heat exchangers.

One extremely important point for experimental data

collection is that a calming section, or unheated entrance

length, for developing the hydrodynamic velocity profile

prior to the heated section of the tube is absolutely es-
sential for correct measurement of pressure drop. The

L=D of this calming section was 30 for the experiments

of Saylor and Joye (1991), and this was found to be

sufficient. In subsequent experiments, we have found

that dispensing with the hydrodynamic entrance length

gives completely erroneous results in pressure drop, and

L=D of about 20–25 would be the absolute minimum

required for a good pressure drop determination. Mea-
suring small pressure drops in liquid flows is quite

challenging and requires the utmost care in the design

and operation of the experimental apparatus. Estimated

error in the measured pressure drop is about 	15% at

the low Reynolds numbers and about 	8% at the higher

Reynolds numbers.

5. Comparison with numerical results

There have been a host of numerical studies on in-

ternal mixed convection flows in the recent past. Almost
Fig. 2. Prediction of theory compared to data at GrL ¼ 4� 1012 and

Pr ¼ 4.
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none deal with the present situation, most using the

constant heat flux boundary condition and a geometric

cross section other than circular. Busedra and Soliman
(1999) give a good summary of recent work and include

their own for inclined channels of semicircular cross-

section. They present the pressure drop results of their

numerical studies in terms of fRe=ðfReÞ0 vs.Gr=Re. Fig. 3
shows the result of the present theory in that format. The

y-axis is the exact equivalent of the pressure drop ratio of

Eqs. (24) and (25). The shapes of the curves between this

work and that of Busedra and Soliman are quite similar,
but the pressure drop ratios are much higher in the

present work. Busedra and Soliman acknowledge that

pressure drop ratios can be higher in circular tubes and

show some data that indicate it could be 50–100% higher

than the values they obtain for ducts of semi-circular

cross section. However, the results in Fig. 3 are much

higher than that. The reasons have to do with the vastly

increased shear rate at the wall resulting from the
buoyancy currents increasing the velocity in the bound-

ary layer near the wall. Hallman shows the possibility of

100-fold increase in pressure drop for Rayleigh numbers

ðGrPrÞ of 10,000 for constant wall temperature situa-

tions. Velusamy and Garg (1996) show numerical results

for vertical tubes with constant heat flux boundary

condition and give a pressure drop ratio of about 15–20

at Rayleigh numbers of about 10,000. This is quite a bit
higher than Busedra and Soliman and suggests that re-

sults for constant wall temperature boundary condition

will not be the same as those for constant heat flux

boundary condition, and the geometry plays a very sig-

nificant role. Indeed, Busedra and Soliman (1999) show

that different results are obtained from different bound-

ary condition, though their curves show only minor

differences. This could be attributed to the fact that they
used 3.66 as the limiting Nusselt number for constant

wall temperature situations, but it is much more com-

plicated than that (see Martinelli et al., 1942).

Fig. 3 also shows a very significant effect of Grashof

number on the pressure drop ratio. For Grashof num-

bers (based on diameter and bulk fluid properties) up to

about 105, there is not much effect of buoyancy on

pressure drop. For liquids, this corresponds to a tem-

perature difference between the wall and the bulk fluid

of about 1 �C, and thus strong buoyancy induced effects
are expected to be minimal. Temperature differences

beyond about 100 �C are rare in practice, thus the ap-

plicability of the present equation is expected to cover

most practical cases of buoyancy affected pressure drop

in aiding flow in a vertical tube.

6. Conclusions

An equation has been developed to predict the pres-

sure drop as a function of flow rate in aiding, mixed
convection flows in a vertical tube for the laminar re-

gime, as defined by heat transfer. This equation was

developed using a core-shell model coupled with the

momentum integral boundary layer approach. A shear

rate modification was used to form the comparison of

pressure drops, and a semi-empirical approach was used

to determine constants that could otherwise not be ob-

tained by analytical solution. This equation will be
useful in design for most practical cases involving aiding

flow in the laminar region, except for situations where

the curvature affects the boundary layer (small diameter

tubes). The equation is expected to be valid for Grashof

numbers based on diameter of up to about 108 and

Reynolds number up to about 11,000 or to where the

flow becomes clearly turbulent.
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